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Abstract.
Within the European DataGrid project, Work Package 2 has designed and im-

plemented a set of integrated replica management services for use by data intensive
scientific applications. These services, based on the web services model, enable
movement and replication of data at high speed from one geographical site to
another, management of distributed replicated data, optimization of access to data,
and the provision of a metadata management tool. In this paper we describe the
architecture and implementation of these services and evaluate their performance
under demanding Grid conditions.

1. Introduction

The European DataGrid (EDG) project was charged with providing a
Grid infrastructure for the massive computational and data handling
requirements of several large scientific experiments. The size of these re-
quirements brought the need for scalable and robust data management
services. These services had to manage replication of large amounts
of data across wide area networks and provide transparent access to
distributed storage systems holding this data. Creating these services
was the task of EDG Work Package 2 (WP2).

The first prototype replica management system was implemented
early in the lifetime of the project in C++ and comprised the edg-
replica-manager [24], based on the Globus toolkit, and the Grid Data
Mirroring Package (GDMP) [25]. GDMP was a service for the replica-
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2 Data Management Work Package - EU DataGrid

tion (mirroring) of file sets between Storage Elements and together with
the edg-replica-manager it provided basic replication functionality.

After the experience gained from deployment of these prototypes
and feedback from users, it was decided to adopt the web services
paradigm [31] and implement the replica management components in
Java. The second generation replica management system now includes
the following services: the Replica Location Service, the Replica Meta-
data Catalog, and the Replica Optimization Service. The primary in-
terface between users and these services is the Replica Manager client.

In this paper we discuss the architecture and functionality of these
components and analyse their performance. The results show that they
can handle user loads as expected and scale well. WP2 services have al-
ready been used as production services for the LHC Computing Grid [22]
in preparation for the start of the next generation of physics experi-
ments at CERN in 2007. A “data challenge” run by the CMS experi-
ment from March to May 2004 successfully used the Replica Location
Service to store and query information on over two million replicated
data files.

The paper is organised as follows: in Section 2 we give an overview
of the architecture of the WP2 services and in Section 3 we describe the
replication services in detail. In Section 4 we evaluate the performance
of the replication services and Section 5 discusses directions of possible
future work. Related work is described in Section 6 and we conclude in
Section 7.

2. Design and Architecture

The WP2 replica management services [10, 20] are based on web ser-
vices and implemented in Java, adhering to the following principles:

− Modularity: Replica management components were designed to be
modular so that plug-ins and future extensions are easy to apply
and each service can operate independently of the others.

− Evolution: The future directions and standards for Grid services
are not well defined, but several groups are working to implement
a framework for Service Oriented Computing [17, 18]. The replica
management components were designed to be flexible with repsect
to these evolving areas and the design allowed for an easy adoption
of these concepts.

− Deployment: A vendor neutral approach was adopted for all com-
ponents to allow for different deployment scenarios. The data man-
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Replica Management 3

agement services are independent of the underlying operating sys-
tem and have been tested on Tomcat and the Oracle 9i Application
Servers, interfacing to MySQL and Oracle database back-ends.

2.1. Web Service Design

Web service technologies [31] provide an easy and standardized way
to logically connect distributed services via XML (eXtensible Markup
Language) messaging. They provide a platform and language indepen-
dent way of accessing the information held by the service and, as such,
are highly suited to a multi-language, multi-domain environment such
as a DataGrid.

All the replica management services have been designed and de-
ployed as web services and run on Apache Axis [4] inside a Java servlet
engine. All services use the Java reference servlet engine, Tomcat [5],
from the Apache Jakarta project [28]. The Replica Metadata Catalog
and Replica Location Service have also been successfully deployed into
the Oracle 9i Application Server and are being used in production mode
in the LCG project [22].

The services expose a standard interface in WSDL format [32] from
which client stubs can be generated automatically in any of the common
programming languages. A user application can then invoke the remote
service directly. Pre-built client stubs are packaged as Java JAR files
and shared and static libraries for Java and C++, respectively. C++
clients are built based on the gSOAP toolkit [29]. Client Command
Line Interfaces are also provided.

The communication between the client and server components is
via the HTTP(S) protocol and the data format of the messages is
XML, with the request being wrapped using standard SOAP Remote
Procedure Call (RPC). Persistent data is stored in a relational database
management system. Services that make data persistent have been
tested and deployed with both open source (MySQL) and commercial
(Oracle 9i) database back-ends, using abstract interfaces so that other
RDBMS systems can be easily slotted in.

3. Replication Services

The design of the replica management system is modular, with several
independent services interacting via the Replica Manager, a logical
single point of entry to the system for users and other external ser-
vices. The Replica Manager coordinates the interactions between all
components of the system and uses underlying file transport services
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for replica creation and deletion. Query functionality and cataloging
are provided by the Replica Metadata Catalog and Replica Location
Service. Optimized access to replicas is provided by the Replica Opti-
mization Service, which aims to minimize file access times by directing
file requests to appropriate replicas.

The Replica Manager is implemented as a client side tool. The
Replica Metadata Catalog, Replica Location Service and the Replica
Optimization Service are all stand-alone services, allowing for a multi-
tude of deployment scenarios in a distributed environment. One advan-
tage of such a design is that if any service is unavailable, the Replica
Manager can still provide the functionality that does not make use
of that particular service. Also, critical service components may have
more than one instance to provide a higher level of availability and
avoid service bottlenecks.

The downside is that a lot of the coordinating logic happens at the
client side so asynchronous interaction is not possible. In cases of failure
on the client side, the user is left with little possibility to automatically
re-try the operations he has to deal with these cases himself. Before
a Replica Management Service could be provided we would need a
secure fine-grained delegation mechanism by the means of which the
client could safely request the service to perform a well defined limited
set of tasks. Full delegation is available but this gives little advantage
over simple authentication which is built into the services already.

3.1. Replica Manager

For the user, the main entry point to the Replication Services is through
the Replica Manager client interface that is provided via C++ and Java
APIs and a command line interface. The actual choice of the service
component to be used can be specified through configuration files. Java
dynamic class loading features are exploited to make them available at
execution time in the Replica Manager.

The Replica Manager also calls upon services external to WP2.
An Information Service such as MDS (Monitoring and Discovery Ser-
vice) or R-GMA (Relational Grid Monitoring Architecture) needs to
be present, as well as storage resources with a well-defined interface,
in our case SRM (Storage Resource Manager) or the EDG-SE (EDG
Storage Element). The Replica Manager also makes use of transport
mechanisms such as GridFTP.

3.2. Replica Location Service

In a highly geographically distributed environment, providing global
access to data can be facilitated via replication, the creation of remote
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read-only copies of files. In addition, data replication can reduce access
latencies and improve system robustness and scalability. However, the
existence of multiple replicas of files in a system introduces additional
issues. The replicas must be kept consistent, they must be locatable and
their lifetime must be managed. The Replica Location Service (RLS) is
a system that maintains and provides access to information about the
physical locations of copies of files [13].

The RLS architecture defines two types of components: the Local
Replica Catalog (LRC) and the Replica Location Index (RLI). The
LRC maintains information about replicas at a single site or on a sin-
gle storage resource, thus maintaining reliable, up to date information
about the independent local state. The RLI is a (distributed) index that
maintains soft collective state information obtained from any number
of LRCs.

Globally Unique IDentifiers (GUIDs) are 128-bit numbers used as
guaranteed unique identifiers for data on the Grid. In the LRC each
GUID is mapped to one or more physical file names identified by Stor-
age URLs (SURLs), which represent paths to the physical locations of
each replica of the data. The RLI stores mappings between GUIDs and
the LRCs that hold a mapping for that GUID. A query on a replica is a
two stage process. The client first queries the RLI in order to determine
which LRCs contain mappings for a given GUID. One or more of the
identified LRCs is then queried to find the associated SURLs.

An LRC is configured at deployment time to subscribe to one or
more RLIs. The LRCs periodically publish the list of GUIDs they
maintain to the set of RLIs that index them using a soft state protocol,
meaning that the information in the RLI will time out and must be
refreshed periodically. The soft state information is sent to the RLIs in
a compressed format using bloom filter objects [9].

An LRC is typically deployed on a per site basis, or on a per storage
resource basis, depending on the site’s resources, needs and config-
uration. A site will typically deploy 1 or more RLIs depending on
usage patterns and need. The LRC can also be deployed to work in
stand-alone mode instead of fully distributed mode, providing the func-
tionality of an replica catalog operating in a fully centralized manner. In
stand-alone mode, one central LRC holds the GUID to SURL mappings
for all the distributed Grid files.

3.3. Replica Metadata Catalog Service

The GUIDs stored in the RLS are neither intuitive nor user friendly.
The Replica Metadata Catalog (RMC) allows the user to define and
store Logical File Name (LFN) aliases to GUIDs. Many LFNs may
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exist for one GUID but the LFN must be unique within the RMC.
The relationship between LFNs, GUIDs and SURLs and how they are
stored in the catalogs is summarised in Figure 1.

Logical
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Logical
Name

Logical
Name

Logical
Name Name

Physical

Name

Name

Name
Physical

Physical

Physical

GUID

RMC

RLS

Figure 1. The Logical File Name to GUID mapping is maintained in the Replica
Metadata Catalog, the GUID to physical file name (SURL) mapping in the RLS.

In addition, the RMC can store GUID metadata such as file size,
owner and creation date. The RMC is not intended to manage all
generic experimental metadata, however it is possible to extend the
RMC to maintain O(10) items of user definable metadata. This meta-
data provides a means for a user to query the file catalog based upon
application-defined attributes.

The RMC is implemented using the same technology choices as the
RLS, and thus supports different back-end database implementations,
and can be hosted within different application server environments.

The reason for providing a separate RMC service from the RLS for
the LFN mapping is the different expected usage patterns of the LFN
and replica lookups. The LFN to GUID mapping and the correspond-
ing metadata are used by the users for preselection of the data to be
processed. However the replica lookup happens at job scheduling time
when the locations of the replicas need to be known and at application
runtime when the user needs to access the file.

3.4. Replica Optimization Service

Optimization of the use of computing, storage and network resources
is essential for application jobs to be executed efficiently. The Replica
Optimization Service (ROS) [7] focuses on the selection of the best
replica of a data file for a given job, taking into account the location of
the computing resources and network and storage access latencies.
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Network monitoring information provided by external EDG services
is used by the ROS to obtain information on network latencies between
the various Grid resources. This information is used to calculate the
expected transfer time of a given file with a specific size. The ROS can
also be used by the Resource Broker to schedule user jobs to the site
from which the data files required can be accessed in the shortest time.

The ROS is implemented as a light-weight web service that gath-
ers information from the European DataGrid network monitoring ser-
vice and performs file access optimization calculations based on this
information.

3.5. Service Interactions

The interaction between the various replica management services can
be explained through a simple case of a user wishing to make a copy of
a file currently available on the Grid to another Grid site (Figure 3.5).
The user supplies the LFN of the file and the destination storage lo-
cation to the Replica Manager (1). The Replica Manager contacts the
RMC to obtain the GUID of the file (2), then uses this to query the
RLS for the locations of all currently existing replicas (3). The ROS
calculates the best site from which the file should be copied based on
network monitoring information (4). The Replica Manager then copies
the file (5) and registers the new replica information in the RLS (6).

Figure 2. Typical usage of the EDG data mangement services.
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4. Evaluation of Data Management Services

Grid middleware components must be designed to withstand heavy and
unpredictable usage and their performance must scale well with the
demands of the Grid. Therefore all the WP2 services were tested for
performance and scaleability under stressful conditions. Some results
of these tests are presented in this section and they show the services
can handle the loads as expected and scale well.

Clients for the services are available in three forms: C++ API, Java
API, and a Command Line Interface (CLI). It was envisaged that the
CLI, typing a command by hand on the command line of a terminal,
would be mainly used for testing an installation or individual command.
The APIs on the other hand would be used directly by applications’
code and would avoid the need for the user to interact directly with
the middleware. Tests were carried out using all three clients for each
component and as the results will show, using the API gives far better
performance results than using the CLI. The reasons for this will be
explained in this section.

All the services can be run as secure or insecure services. Secu-
rity within the services is based on the Grid Security Infrastructure
(GSI) [11] developed by Globus adapted for the web services architec-
ture used by the WP2 replica management services. The use of secure
services involves mutual authentication to establish the identities of
both the client and server and authorization mechanisms to determine
the access rights of the user for the particular service. This can add a
significant overhead to the performance of the services involved. Here
results are shown from tests using both secure and insecure services.

The performance tests were run on the WP2 testbed, consisting of
13 machines in 5 different sites. All the machines had similar specifi-
cations and operating systems and ran identical versions of the WP2
middleware. The application server used to deploy the services was
Apache Tomcat 4 and for storing data on the server side, MySQL was
used. For most of the performance tests small test applications were
developed; these are packaged with the software and can therefore be
re-run to check the results obtained.

4.1. Replica Location Service

Within the European DataGrid testbed, the RLS so far has only been
used with a single LRC per Virtual Organization (group of users col-
laborating on the same experiment or project). Therefore results are
presented showing the performance of a single LRC.
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Replica Management 9

Firstly, the C++ client was tested using a test suite which inserts
a number of GUID:SURL mappings, queries for one GUID and then
deletes the mappings. This tests how each of these operations on the
LRC scales with the number of entries in the catalog.

Figure 3(a) shows the total time to insert and delete up to 10 million
mappings, and Figure 3(b) shows how the time to query one entry varies
with the number of entries in the LRC. These tests were run without
GSI security.

Figure 3. (a) Total time to add and delete mappings and (b) query the LRC using
the C++ API.

The results show that insert and delete operations have stable be-
haviour, in that the total time to insert or delete mappings scales
linearly with the number of mappings inserted or deleted. A single
transaction with a single client thread takes about 25 - 29 ms with the
tendency that delete operations are slightly slower than inserts. The
query time is independent of the number of entries in the catalog up
to around 1 million entries, when it tends to increase.

Taking advantage of the multiple threading capabilities of Java, it
was possible to simulate many concurrent users of the catalog and
monitor the performance of the Java API.

The first test was done with 10 concurrent threads, where at any
given moment 5 threads would be inserting a mapping and 5 threads
would be querying a mapping. Figure 4 compares insert time and query
time for the LRC with varying numbers of entries using (a) a secure
service and (b) an insecure service. Using security creates significant
overheads due to the creation of a secure communications channel be-
tween the client and server and the time to authorise client requests
according to a certain access control policy. In this case these extra
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Figure 4. Time to insert mappings and query one GUID for different numbers of
entries in the LRC, using 5 concurrent inserting clients and 5 concurrent querying
clients with (a) a secure service and (b) an insecure service.

processes make catalog operations take up to 20 times longer than
operations on an insecure catalog.

In Figure 4(a) the variation of operation times with the number
of entries is somewhat obscured by the large security overhead but in
general queries take slightly less time than inserts. The trend is a lot
clearer in Figure 4(b), which shows the insert time rising from 140 ms
to 200 ms as the catalog fills up but the query time remaining at a
constant 100 ms and not varying with the number of entries.

Figure 5. (a) Total time to add 500,000 mappings to the LRC using concurrent
threads and (b) comparison of Java and C++ API performance.
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To measure the effective throughput of the LRC, i.e. the time to
complete the insert of a certain number of entries, the total time to
insert 500,000 mappings was measured for different numbers of con-
current threads using the Java API on an insecure service. Figure 5(a)
shows that the time falls rapidly with increasing numbers of threads,
bottoming out after 10 or 20 threads. For 20 threads the total time
taken is about 40% less than using one thread. Although the time for
an individual operation is slower the more concurrent operations are
taking place, the overall throughput actually increases, showing the
ability of the LRC to handle multiply threaded operations.

A direct comparison between the Java and C++ API performance
when inserting one mapping into the LRC for varying numbers of en-
tries in the catalog is given in Figure 5(b). This test was carried out
with one client thread operating on an insecure service and the results
confirm the behaviour seen in Figure 3(a) and Figure 4(b), that C++
has much more stable and performant behaviour than Java. The total
time to complete the 500,000 operations was just over 9000s using the
C++ API and almost 13500s with the Java API, a difference of 50%.

Similar performance tests on the C-based Globus implementation
of the Replica Location Service framework are presented in [14]. Here
peak performance is also seen when around 10 concurrent client threads
are using the service, however the rates of operations achieved are much
higher, reaching 750 inserts and 2000 queries per second (after tuning
certain database backend parameters).

4.2. Replica Metadata Catalog

The Replica Metadata Catalog can be regarded as an add-on to the
RLS system and is used by the Replica Manager to provide a complete
view on LFN:GUID:SURL (Figure 1) mapping. In fact the way the
RMC and LRC are used is exactly the same, only the data stored is
different and thus one would expect similar performance from both
components.

In the European DataGrid model, there can be many user defined
LFNs to a single GUID and so the behaviour of the RMC was analysed
in the case where there were multiple LFNs mapped to a single GUID.
Figure 6(a) shows the time to insert and delete 10 GUIDs with different
numbers of LFNs mapped to each GUID and Figure 6(b) shows the time
to query for 1 LFN with varying numbers of LFNs per GUID. These
tests used the C++ API and an insecure service.

The insert/delete times increase linearly as one might expect, since
each new LFN mapping to the GUID is treated in a similar way to
inserting a new mapping, thus the effect is to give similar results to
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Figure 6. Total time to (a) insert and delete 10 GUIDs with varying number of
LFNs, and (b) query for one LFN.

the insert times for the LRC seen in Figure 3 in terms of number of
operations performed. Query operations take longer the more LFNs
exist for a single GUID, however the query time per LFN mapped to
the GUID actually decreases the more mappings there are, hence the
RMC performance scales well with the number of mappings associated
with each GUID.

Along with LFN aliases, in the RMC users can define O(10) asso-
ciated metadata attributes to each alias, such as date created, file size
or application specific data such as the energy used to create a specific
physics event or the coordinates of a satellite image. This data can be
used to query a subset of data from the catalog.

The time to insert mappings into the catalog including these at-
tributes was measured and results are shown in Figure 4.2. Mappings
were inserted with 1, 5 or 10 attributes where half the attributes were
string attributes and half were integer attributes. In all cases one thread
performed the inserts using the Java API and an insecure RMC service.

It can be seen that adding an attribute to an alias takes an equivalent
amount of time to adding the mapping itself, i.e. 25-30 ms. The number
of attributes added and hence the increasing amount of information
held by the database does not affect the insert timings, as the three
sets of results have essentially the same shape, in that there is a very
gradual increase in insert time as the number of entries in the catalog
increases.

The command line interface for all the services is implemented in
Java using the Java API. Table I shows some timing statistics giving
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Figure 7. Variation of insert time with different numbers of entries in the catalog
and different numbers of attributes per entry.

the time to execute different parts of the command addAlias used to
insert a GUID:LFN mapping into the RMC using a secure service.

Table I. Timing statistics for adding a GUID:LFN
mapping in the RMC using the CLI.

Time (s) Operation

0 - 1.0 Start-up script and JVM start-up time

1.0 - 1.1 Parse command and options

1.1 - 2.1 Get RMC service locator

2.1 - 2.3 Get RMC object

2.3 - 3.7 Call to the rmc.addAlias() method

2.3 - 3.0 Java class loading

3.0 - 3.6 Security authorisation

3.6 - 3.7 Database operations

3.7 End

The total time to execute the command was 3.7s and this time is
broken down into the following areas: The start-up script sets various
options such as logging parameters and the class-path for the Java
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executable and this, along with the time to start the Java Virtual
Machine, took 1.0s. After parsing the command line it took a further
1.0s to get the LRC service locator - during this time many external
classes had to be loaded in.

The call to the addAlias() method within the Java API took around
1.4s, mainly due to the Java dynamic class loading that takes place first
time a method is called (0.7s) and the security authorisation (0.6s). The
database operations themselves took less than 0.1s. Compared to the
average over many calls of around 25 ms observed above in the API
tests, this is very large, and because every time the CLI is used a new
JVM is started up, the time to execute the command is the same every
time.

In short, the time taken to insert a GUID:LFN mapping into the
RMC using the command line interface is about 2 orders of magnitude
longer than the average time taken using the Java or C++ API. There-
fore the command line tool is only recommended for simple testing and
not for large scale operations on the catalog.

5. Open Issues and Future Work

Most of the services provided by WP2 have satisfied the basic user
requirements and the software system can be used efficiently in a Data
Grid environment. However, several areas still need work.

5.1. User Feedback

There are a number of capabilities that have been requested by the
users of our services or that we have described and planned in the
overall architecture but did not implement within the project.

There is currently no proper transaction support in the Replica
Management services. This means that if a seemingly atomic operation
is composite, like copying a file and registering it in a catalog, there
is no transactional safety mechanism if only half of the operation is
successful. This may leave the content of the catalogs inconsistent with
respect to the actual files in storage. A consistency service scanning the
catalog content and checking its validity also would add to the quality
of service.

The other extreme is the grouping of several operations into a single
transaction. Use cases from the high energy physics community have
shown that the granularity of interaction is not on a single file or even
of a collection of files. Instead, they would like to see several operations
managed as a single operative entity. These are operations on sets of
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files, spawned across several jobs, involving operations like replication,
registration, unregistration, deletion, etc. This can be managed in a
straightforward manner if replica management jobs are assigned to a
session. The Session Manager would hand out session IDs and finalize
sessions when they are closed, i.e. only at that time would all changes
to the catalogs be visible to all other sessions. In this context sessions
are not to be misinterpreted as transactions, as transactions may not
span different client processes; sessions are also managed in a much
more lazy fashion.

We have also received requests for the support of file-system seman-
tics in the logical file namespace, including the support for directories
and fine-grained access control mechanisms in the catalog layer. The
directory support in the logical namespace would satisfy most requests
for proper file collections if metadata can also be associated with di-
rectory entries. For more complex collection semantics there might be
the need for additional metadata.

In the original WP2 design, pre- and post-processing hooks were
foreseen to be available through the Replica Manager. The reason to
have such hooks is that many Virtual Organizations have use-cases con-
cerning replication where they have to add some processing before the
data can be replicated. These can be checksums, specialized validation
after copy, encryption and decryption of data, additional entries to be
made in application catalogs, actual data generation from templates,
etc.

5.2. Future Services

There are several other services that need to be addressed in future
work. In the first prototype of the European DataGrid testbed WP2
provided a replica subscription facility, GDMP [25]. The hope was to
replace GDMP with a more robust and versatile facility fully integrated
with the rest of the replication system, but this was not done due time
pressures. The functionality to automatically distribute files based on
some subscription mechanism is still much-needed.

In terms of Metadata Management, currently the metadata support
in the RMC is limited to of O(10) basic typed attributes, which can
be used to select sets of LFNs. The RMC cannot support many more
metadata attributes or more complex metadata structures. There is
ongoing work in the context of the GGF DAIS working group to define
proper interfaces for data access and integration, much of their findings
can be used to refine and re-define the metadata structures of the RMC.
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5.3. Future Optimisation Strategies

The current ROS component is conservative in terms of functionality,
and there has been much recent research in this area [12, 21, 23] that
should be leveraged to improve the capabilities and performance of the
optimisation systems. This would include the facility for the service
to automatically replicate popular data sets based on previous access
history, or pre-stage files based on job requirements before a job starts
running.

5.4. Adhering to Standards

The Open Grid Service Architecture (OGSA) [18] is a GGF effort to
describe Grid service architectures which define in generic terms the
structure and mechanisms that have to be made available by Grid
services in order to be “OGSA compliant”. The current versions of these
Grid standards are extensions of the standard web service frameworks
already used for WP2 software, consequently the migraton to any of
these newly emerging Grid standards should be straightforward.

6. Related Work

As mentioned, one of the first Grid replica management prototypes
was GDMP [25]. In its first toolkit the Globus project [1] provided an
LDAP-based replica catalog service and a simple replica manager that
could manage file copy and registration as a single step. The initial
implementation of the EDG Replica Manager simply wrapped these
tools, providing a more user-friendly API and mass storage bindings.
Later, we developed the concept of the Replica Location Service (RLS)
together with Globus [13]. Both projects have their own implementa-
tion of the RLS and the performance of the Globus implementation is
examined in [14].

In terms of storage management, we have participated actively in
the definition of the Storage Resource Management (SRM) [8] interface
specification. Work is being carried out on a Reliable File Transfer
service [3] by the Globus Alliance, which may be exploited by future
high-level data management services for reliable data movement. An
integrated approach for data and meta-data management is provided
in the Storage Resource Broker (SRB) [6].

Within the high energy physics community one of the most closely
related projects is SAM [26] (Sequential data Access via Metadata)
that was initially designed to handle data management issues of the
D0 experiment at Fermilab. Another data management system as part
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of the Condor project is Kangaroo [27], which provides a reliable data
movement service. It also makes use of all available replicas in its system
such that this is transparent to the application.

Related work with respect to replica access optimization has been
done in the Earth Science Grid (ESG) [2] project, which makes use of
the Network Weather Service (NWS) [33]. Optimized replica selection
based on ClassAd match-making between storage resources and appli-
cation requirements, whereby the storage resources can be ranked by
attributes such as available space or maximum data transfer rate is dis-
cussed in [30]. Further studies in the field of optimized data replication
have been presented in [12] and [23].

Various solutions have been proposed to data management in peer-
to-peer environments, however these tend to concentrate on a specific
requirement of a certain group of users. Gnutella [19] provides a rapid
querying system at the expense of flooding the network with mes-
sages while Freenet [15] uses a more conservative querying system to
pin-point data location and guarantees anonymity for all users. Free
Haven [16] also provides anonymous read and write access on the
network and concentrates on guarenteeing persistency of data. These
systems work well for millions of users sharing small files but are not
robust or reliable enough for the specialised requirements of smaller
groups of scientists.

Some companies are now starting to offer replication-based solutions
to the data handling needs of industry. Avaki for example focusses on
simplifying access to data from multiple heterogeneous sources. A data
servce layer lies between any number of data sources and any number
of data applications and for the applications it appears as one virtual
data source.

7. Conclusion

In this paper we have described the design and architecture and ex-
amined the performance of the data management services provided to
the European DataGrid project by Work Package 2. The web services
model was used to create a set of independent replication, cataloging
and optimization services accessed via a single entry point, the Replica
Manager. The adoption of the web services model enables a platform
and vendor independent means of accessing and managing the data and
associated metadata of the user applications. Performance analysis has
shown that when the services are used as intended, they can cope under
stressful conditions and scale well with increasing user load.
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It remains to be seen what the final standard will be for a Grid ser-
vices framework. But the data management services we have developed
should be adaptable with minimal effort to the emergent standards and
can provide a solid base for any future efforts in this area.
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